2020

PHYSICS - HONOURS

Paper : DSE-A-1

(Advanced Mathematical Methods Theory)

Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question nos. $1 \& 2$, and any four questions from the rest (Q. 3 to Q.8).

1. Answer any five questions :
(a) If P_{1} and P_{2} are two projection operators, then under what condition is $P_{1}+P_{2}$ also behaves like a projection operator?
(b) Show that any two vectors $\left|V_{1}\right\rangle$ and $\left|V_{2}\right\rangle(\neq 0)$ that are orthogonal to each other are linearly independent.
(c) Use transformation property of cartesian tensors to establish that every contraction reduces the rank of a tensor by 2 .
(d) Show that $\delta_{\mathrm{j}}^{\mathrm{i}}$ is an isotropic tensor.
(e) If $|q\rangle$ is any eigenstate of operator $\hat{\mathrm{Q}}$ such that $\hat{\mathrm{Q}}|q\rangle=q|q\rangle$ and suppose that $\hat{\mathrm{C}}$ is another operator with $\hat{\mathrm{C}}|q\rangle=|-q\rangle$, show that $\hat{\mathrm{C}} \hat{\mathrm{Q}}=-\hat{\mathrm{Q}} \hat{\mathrm{C}}$.
(f) The line element in metric form is given by $\mathrm{ds}^{2}=\mathrm{g}_{\mu \nu} \mathrm{dx}^{\mu} \mathrm{dx}^{\nu}$. Use Quotient law to argue that $\mathrm{g}_{\mu \nu}$ is a covariant tensor of rank two.
(g) Let e_{1}, e_{2}, e_{3} be the generators of a three dimensional Lie algebra with the commutation relation $\left[e_{1}, e_{2}\right]=0,\left[e_{2}, e_{3}\right]=e_{1}+e_{2} ;\left[e_{3}, e_{1}\right]=-e_{1}$. Find $\left[e_{1},\left[e_{2}, e_{3}\right]\right]+\left[e_{3},\left[e_{1}, e_{2}\right]\right]$.
2. Answer any three questions :
(a) Given the set of vectors $u_{1}=(2,-1,0), u_{2}=(1,0,-1), u_{3}=(3,7,-1)$. Use Gram-Schmidt orthogonalization procedure, with the standard Euclidean inner product, to find an orthonormal set.

5
(b) Prove the vector identity $(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}) \cdot(\overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{D}})=(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{C}})(\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{D}})-(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{D}})(\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{C}})$
using $\epsilon_{i j k} \epsilon_{p q k}=\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}$.
(c) An antisymmetric tensor $F_{\mu \nu}$ satisfies $\partial_{\mu} F^{\mu \nu}=j^{\nu}$.
(i) Show that $\partial_{\mathrm{v}} \mathrm{j}^{\nu}=0$.
(ii) Find out the number of independent components of $F_{\mu \nu}$ in 4 dimensions.
(iii) Show that for any mixed tensor $T_{\nu}^{\mu}, T_{\mu}^{\mu}$ is a scalar.
(d) (i) Show that all $(n \times n)$ unitary matrices form a group under multiplication.
(ii) Show that all such matrices with determinant 1 forms a subgroup.
(e) Show that all integers including zero form a group under addition. Write down the identity element. Do they form a group under subtraction? Justify.
3. Show that the matrix $\mathrm{A}=\left(\begin{array}{rr}1 & -i \\ i & 1\end{array}\right)$
(a) is Hermitian.
(b) Find out its eigenvalues.
(c) Find out eigenvectors and show that they are orthogonal.
(d) Denoting the eigenvectors $|1\rangle$ and $|2\rangle$, show that $|1\rangle\langle 1|+|2\rangle\langle 2|=\mathbb{I}$. $1+2+(3+1)+3$
4. Starting with a vector space consisting of functions
$f_{0}(x)=1, f_{1}(x)=x, f_{2}(x)=x^{2}, \ldots, f_{n}(x)=x^{n}$ and defining the scalar product as

$$
\left\langle f_{m} \mid f_{n}\right\rangle \equiv \int_{-1}^{1} f_{m}(x) f_{n}(x) d x
$$

(a) Show that these functions are not orthogonal to each other.
(b) Starting from $f_{0}(x)$ and $f_{1}(x)$, use Gram-Schmidt method to construct first three polynomials $P_{0}(x)$, $P_{1}(x)$ and $P_{2}(x)$.
(c) Normalize these polynomials such that $P_{n}(x=1)=1$.
(d) Show that $P_{2}(x)$ is an eigenfunction of the operator $\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}$. Find the eigenvalue. $2+4+2+2$
5. Consider two vectors (cartesian) \vec{A} and \vec{B} in 3D. For an anticlockwise rotation about the z-axis by an angle θ.
(a) How do the components of the vectors change?
(b) Show that for a norm-preserving rotation $\sum_{i} A_{i} B_{i}$ is a scalar, using transformation properties.
(c) Define :

$$
\begin{aligned}
& C_{1} \equiv A_{2} B_{3}-A_{3} B_{2} \\
& C_{2} \equiv A_{3} B_{1}-A_{1} B_{3} \\
& C_{3} \equiv A_{1} B_{2}-A_{2} B_{1}
\end{aligned}
$$

Show that under this rotation C_{1}, C_{2}, C_{3} transform like the components of a vector.
(d) Identify \vec{C} in terms of \vec{A} and \vec{B}.
6. (a) Write down the Moment of Inertia tensor $\mathrm{I}_{i j}$ explaining each term.
(b) Show that $\mathrm{I}_{i j}$ is symmetric.
(c) Show that $\mathrm{I}_{i j}$ transforms as a 2 nd rank tensor.
(d) Construct the inertia matrix for a system of three point masses of 1 unit, 2 units and 1 unit placed at $(1,1,-2),(-1,-1,0)$ and $(1,1,2)$ respectively.
7. (a) Construct the group multiplication table for the set of elements $\{1, i,-1,-i\}$. Find out the identity element. Find the inverse of the element i and -1 .
(b) Consider $\{1,-1\}$. Show that they form a subgroup of the above group.
(c) Consider two matrices $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) ; B=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. Show that the map $1 \rightarrow A$ and $-1 \rightarrow B$ is a homomorphism.
8. (a) Write down the generators for $S U(2)$ group in fundamental representation.
(b) Find out the non-zero structure constants.
(c) Find out the adjoint representation of $S U(2)$ group.

