2020

PHYSICS - HONOURS

Paper: CC-1

(Mathematical Physics I)

Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions :
(a) Evaluate $\lim _{x \rightarrow 1} \frac{x^{10}-1}{x^{5}-1}$
(b) State the order and degree of the differential equation

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{2}+x^{3} y=0
$$

(c) Check whether the three vectors $\hat{i}, \hat{i}+\hat{j}, \hat{i}+\hat{j}+\hat{k}$ are linearly independent.
(d) Check whether $d w=2 x y d x+x^{2} d y$ is an exact differential.
(e) If \vec{A} is a constant vector, find $\vec{\nabla}(\vec{A} \cdot \vec{r})$.
(f) Show that any square matrix can be written as the sum of a symmetric and an anti-symmetric matrix.
(g) A 2×2 matrix A satisfies the equation $(A-2 I)^{2}=\mathrm{O}$, where I is the 2×2 identity matrix. Find the trace of A.
2. (a) Sketch the function e^{x}, e^{-x} and $e^{-|x|}$ for $-1 \leq x \leq 1$. Explain whether the function $e^{-|x|}$ is differentiable at $x=0$.
(b) Find the Taylor series expansion of $\sin x$ about $x=\pi$, giving the first two non-zero terms.
(c) Show that the functions x, x^{2} and x^{3} are linearly independent.
3. (a) Solve the equation
$y^{\prime \prime}+6 y^{\prime}+8 y=0$
subject to the condition $y=1, y^{\prime}=0$ at $x=0$ where $y^{\prime} \equiv \frac{d y}{d x}$ and $y^{\prime \prime} \equiv \frac{d^{2} y}{d x^{2}}$.
(b) Prove that if the Wronskian of the functions $f_{1}(x), f_{2}(x)$ and $f_{3}(x)$ is not identically zero, then the functions are linearly independent.
(c) Given $x=r \cos \theta, y=r \sin \theta$
calculate $\left(\frac{\partial \theta}{\partial x}\right)_{y},\left(\frac{\partial x}{\partial \theta}\right)_{y}$ and $\left(\frac{\partial x}{\partial \theta}\right)_{r}$.
4. (a) Considering two position vectors in three dimensions, show that their scalar product remains invariant under the rotation of co-ordinate system about z-axis.
(b) Suppose that the temperature T at any point (x, y, z) is given by
$T(x, y, z)=x^{2}-y^{2}+y z+373$.
In which direction is the temperature increasing most rapidly at $(-1,2,3)$? What is the maximum rate of change of temperature at that point?
(c) If S is any closed surface enclosing a volume V and $\vec{A}=a x \hat{i}+b y \hat{j}+c z \hat{k}$, prove that $\oiint_{S} \vec{A} \cdot d \vec{S}=(a+b+c) V$. $4+(2+1)+3$
5. (a) Using Gauss' divergence theorem, show that

$$
\iiint_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\oiint_{S}(\phi \vec{\nabla} \psi-\psi \vec{\nabla} \phi) \cdot d \vec{S}
$$

where $\phi(x, y, z)$ and $\psi(x, y, z)$ are two scalar functions and the surface integral is over the surface S enclosing the volume V.
(b) Prove that $\vec{\nabla} \times(\phi \vec{V})=(\vec{\nabla} \phi) \times \vec{V}+\phi(\vec{\nabla} \times \vec{V})$ for a scalar field $\phi(x, y, z)$ and a vector field $\vec{V}(x, y, z)$.

Now take \vec{V} to be a non-zero constant vector field \vec{C} and use Stokes' theorem to prove that $\oint_{C} \phi d \vec{r}=\iint_{S} d \vec{S} \times \vec{\nabla} \phi$, where the closed curve C is the boundary of the surface S.
(c) Let $\hat{\rho}$ and $\hat{\phi}$ be the unit vectors in plane polar coordinates. If

$$
\binom{\hat{\rho}}{\hat{\phi}}=R\binom{\hat{i}}{\hat{j}},
$$

find the matrix R.
6. (a) Find the eigenvalues and the normalized eigenvectors of the matrix

$$
M=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Write down the matrix U such that $U^{-1} M U$ is diagonal.
(b) Consider $A B-B A=i C$. If A and B are hermitian matrices, show that the matrix C is also hermitian. Here $i=\sqrt{-1}$.
(c) Show that an eigenvector of a matrix A with eigenvalue λ is also an eigenvector of the matrix A^{3} with eigenvalue λ^{3}.
$(2+2+2)+2+2$
7. (a) If C is an orthogonal matrix and M is a symmetric matrix, show that $C^{-1} M C$ is symmetric.
(b) Show that the eigenvectors of a hermitian matrix with different eigenvalues are orthogonal.
(c) Solve the system of equations
$\frac{d x}{d t}=2 x+3 y$
$\frac{d y}{d t}=3 x-6 y$.

