T(1st Sm.)-Physics-H/CC-1/CBCS

2020

PHYSICS — HONOURS

Paper : CC-1

(Mathematical Physics I)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions :

(a) Evaluate
$$\lim_{x \to 1} \frac{x^{10} - 1}{x^5 - 1}$$

(b) State the order and degree of the differential equation

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^2 + x^3y = 0$$

- (c) Check whether the three vectors $\hat{i}, \hat{i} + \hat{j}, \hat{i} + \hat{j} + \hat{k}$ are linearly independent.
- (d) Check whether $dw = 2xy dx + x^2 dy$ is an exact differential.
- (e) If \vec{A} is a constant vector, find $\vec{\nabla} (\vec{A}, \vec{r})$.
- (f) Show that any square matrix can be written as the sum of a symmetric and an anti-symmetric matrix.
- (g) A 2×2 matrix A satisfies the equation $(A 2I)^2 = O$, where I is the 2×2 identity matrix. Find the trace of A.
- 2. (a) Sketch the function e^x , e^{-x} and $e^{-|x|}$ for $-1 \le x \le 1$. Explain whether the function $e^{-|x|}$ is differentiable at x = 0.
 - (b) Find the Taylor series expansion of sin x about $x = \pi$, giving the first two non-zero terms.
 - (c) Show that the functions x, x^2 and x^3 are linearly independent. (3+2)+3+2

Please Turn Over

2×5

T(1st Sm.)-Physics-H/CC-1/CBCS

3. (a) Solve the equation

$$y''+6y'+8y=0$$

subject to the condition y = 1, y' = 0 at x = 0 where $y' = \frac{dy}{dx}$ and $y'' = \frac{d^2y}{dx^2}$.

(b) Prove that if the Wronskian of the functions $f_1(x)$, $f_2(x)$ and $f_3(x)$ is not identically zero, then the functions are linearly independent.

(2)

(c) Given $x = r \cos \theta$, $y = r \sin \theta$

calculate
$$\left(\frac{\partial \theta}{\partial x}\right)_y$$
, $\left(\frac{\partial x}{\partial \theta}\right)_y$ and $\left(\frac{\partial x}{\partial \theta}\right)_r$. 4+3+3

- 4. (a) Considering two position vectors in three dimensions, show that their scalar product remains invariant under the rotation of co-ordinate system about *z*-axis.
 - (b) Suppose that the temperature T at any point (x, y, z) is given by

$$T(x, y, z) = x^2 - y^2 + yz + 373$$

In which direction is the temperature increasing most rapidly at (-1, 2, 3)? What is the maximum rate of change of temperature at that point?

(c) If S is any closed surface enclosing a volume V and $\vec{A} = ax\hat{i} + by\hat{j} + cz\hat{k}$, prove that

$$\bigoplus_{S} \vec{A} \cdot d\vec{S} = (a+b+c)V \cdot 4 + (2+1) + 3$$

5. (a) Using Gauss' divergence theorem, show that

$$\iiint\limits_{V} \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) dV = \bigoplus\limits_{S} \left(\phi \vec{\nabla} \psi - \psi \vec{\nabla} \phi \right) \cdot d\vec{S}$$

where $\phi(x, y, z)$ and $\psi(x, y, z)$ are two scalar functions and the surface integral is over the surface *S* enclosing the volume *V*.

(b) Prove that $\vec{\nabla} \times (\phi \vec{V}) = (\vec{\nabla} \phi) \times \vec{V} + \phi (\vec{\nabla} \times \vec{V})$ for a scalar field $\phi(x, y, z)$ and a vector field $\vec{V}(x, y, z)$.

Now take \vec{V} to be a non-zero constant vector field \vec{C} and use Stokes' theorem to prove that $\oint_C \phi d\vec{r} = \iint_S d\vec{S} \times \vec{\nabla} \phi$, where the closed curve *C* is the boundary of the surface *S*.

(c) Let $\hat{\rho}$ and $\hat{\phi}$ be the unit vectors in plane polar coordinates. If

$$\begin{pmatrix} \hat{\rho} \\ \hat{\phi} \end{pmatrix} = R \begin{pmatrix} \hat{i} \\ \hat{j} \end{pmatrix},$$

3+(2+3)+2

find the matrix *R*.

6. (a) Find the eigenvalues and the normalized eigenvectors of the matrix

$$M = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Write down the matrix U such that $U^{-1}MU$ is diagonal.

- (b) Consider AB BA = iC. If A and B are hermitian matrices, show that the matrix C is also hermitian. Here $i = \sqrt{-1}$.
- (c) Show that an eigenvector of a matrix A with eigenvalue λ is also an eigenvector of the matrix A^3 with eigenvalue λ^3 . (2+2+2)+2+2
- 7. (a) If C is an orthogonal matrix and M is a symmetric matrix, show that $C^{-1}MC$ is symmetric.
 - (b) Show that the eigenvectors of a hermitian matrix with different eigenvalues are orthogonal.
 - (c) Solve the system of equations

.

$$\frac{dx}{dt} = 2x + 3y$$
$$\frac{dy}{dt} = 3x - 6y.$$
$$3+3+4$$