2020

PHYSICS - HONOURS

Paper : CC-5

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions :
(a) Show that any function $f(x+t)$ is a solution of the equation

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial t},
$$

when $u=u(x, t)$.
(b) Using Gamma function integral, prove that $0!=1$.
(c) Using generating function for Legendre Polynomial, prove that $P_{2 l+1}(0)=0$.
(d) Find the indicial equation for the differential equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+p x \frac{d y}{d x}+q y=0$, where p and q are constants.
(e) Find the non zero Fourier coefficients of
$f(x)=\cos ^{2} x, 0 \leq x<2 \pi$.
(f) Find the Fourier transform of the Dirac δ-function, $\delta(x-a)$.

$$
\boldsymbol{O r}
$$

For a generalised coordinate q, the Lagrangian is given by
$L=\alpha \dot{q}^{2}+\beta q \dot{q}-\gamma \sin q$,
where α, β, γ are constants. Find the Hamiltonian H.
(g) For a random variable X, one finds $\langle X\rangle=2$ and $\left\langle X^{2}\right\rangle=8$. Find the standard deviation σ_{x}.
Or,

For the Hamiltonian
$H=a p^{2}+b x^{2}-c x p$
(where a, b, c are constants), find the Hamilton's equation of motion.
2. (a) Find the probability density function $f(x)$ for the position of a particle executing SHM on ($-a, a$) along the x-axis.
(b) Let X be a random variable having a normalized density function

$$
f(x)=\left\{\begin{array}{l}
C e^{-x} \quad x \geq 0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Find :
(i) the value of $|C|$ where C is a constant.
(ii) the variance σ^{2}.
(iii) the probability $P(1 \leq x \leq 2)$.

Or,

(a) Write Lagrange's equation in cylindrical co-ordinates for a particle of mass m, moving in the gravitational potential $V=m g z$ starting from the Lagrangian.
(b) Is there any cyclic co-ordinate? If yes, find the corresponding conserved quantity.
(c) Given two points P_{1} and P_{2} (not too far apart), we draw a curve joining them and revolve it about the x-axis. Find the curve for which the surface area is minimum.
$3+2+5$
3. (a) Consider a cycloid with parametric equation $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$. Show that the time for a particle to slide without friction along the curve from $\left(x_{1}, y_{1}\right)$ to origin is independent of starting point. (use beta function to evaluate the integral).
(b) Prove $B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$, symbols are usual.
4. (a) Given $f(x)=\left\{\begin{array}{ll}0, & 0<x<l \\ 1, & l<x<2 l\end{array}\right.$.

Expand the function in Fourier series of period $2 l$.
(b) Let a function $f(x)$ be expanded in Fourier series. Show that average of $[f(x)]^{2}$ over a period $=\left(\frac{a_{o}}{2}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty} a_{n}^{2}+b_{n}^{2}$.
(c) Using the result of (b), show that using $f(x)=x,-1<x<1$ the infinite sum $\sum_{1}^{\infty} \frac{1}{n^{2}}=\pi^{2} / 6$.
5. (a) Use Rodrigue's formula

$$
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}
$$

Show that $P_{l}(1)=1$.
(b) Using (a), find $P_{3}(x)$. Plot $P_{3}(x)$ as a function of x where $-1 \leq x \leq 1$.
(c) Calculate $\int_{-1}^{+1} x^{2} P_{3}(x) d x$.
6. Consider the differential equation $\frac{d^{2} y(x)}{d x^{2}}+y(x)=0$
(a) Check whether $x=0$ is an ordinary point or a regular singular point.
(b) Find the indicial equation.
(c) From the indicial equation, find two linearly independent solutions of the given differential equation.
7. (a) Consider the one-dimensional wave equation for waves propagating along a string of length l. Its ends are fixed at $x=0$ and $x=l$. The string is struck by a fine hammer such that it has an initial displacement zero everywhere but has an initial velocity v at $x=\frac{3 l}{4}$.
Find the solution of the wave equation in this case.
(b) Consider

$$
\nabla^{2} \phi(r, \theta, \phi)=f(r) .
$$

Using separation of variables, write down three ordinary differential equations. Solve the equation for ϕ coordinate.

