(T(5th Sm.)-Physics-G/DSE-A-1/CBCS/Day-1

2020

PHYSICS — GENERAL

Paper : DSE-A-1

(Analog Electronics)

Full Marks : 50

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

Day 1

১ নং প্রশ্ন এবং অবশিষ্ট **যে-কোনো চারটি** প্রশ্নের উত্তর দাও।

>। **যে-কোনো পাঁচটি** প্রশের উত্তর দাও ঃ

(ক) তড়িৎ বর্তনী সংক্রান্ত নর্টন উপপাদ্যটি বিবৃত করো।

(খ) লাইট এমিটিং ডায়োডের কার্যনীতি উল্লেখ করো।

(গ) বর্তনীতে ঋণাত্মক ফীডব্যাক কেন ব্যবহার করা হয়?

(খ) OPAMP-র ভারচুয়াল গ্রাউন্ড কী?

(৬) অনবরত স্পন্দন-এর বার্কহাউসেন শর্ত কী?

(চ) একমুখীকরণ বলতে কী বোঝো?

(ছ) একটি ট্রানজিস্টারের α ও β-র সংজ্ঞা দাও।

২। (ক) থেভেনিনের উপপাদ্য প্রয়োগ করে নিম্নের বর্তনীতে 100 Ω রোধে প্রবাহমাত্রা নির্ণয় করো।

(খ) সর্বোচ্চ ক্ষমতা সঞ্চালন উপপাদ্য বিবৃত করো।

(গ) আদর্শ ভোল্টেজ উৎস এবং কারেন্ট উৎস কাকে বলে?

•। (ক) একটি সৌর কোষের গঠন ও কার্যপ্রণালী ব্যাখ্যা করো।

- (খ) সাধারণ নিঃসারক সংযোগে (CE mode) একটি *n–p–n* ট্রানজিস্টারের সরল বর্তনী অঙ্কন করো।
- (গ) একটি জেনার ডায়োড কীভাবে লোডের দু-প্রান্তের মধ্যে ভোল্টেজকে স্থির রাখে, তা ব্যাখ্যা করো। 8+৩+৩

Please Turn Over

২×৫

8+0+0

(T(5th Sm.)-Physics-G/DSE-A-1/CBCS/Day-1)(2)

- ৪। (ক) চিত্রসহ একটি ব্রীজ একমুখীকারকের কার্যপ্রণালী ব্যাখ্যা করো।
 - (খ) 'লাইন-নিয়ন্ত্রণ' ও 'লোড-নিয়ন্ত্রণ' বলতে কী বোঝো?
 - (গ) PN সংযোগ ডায়োডের বৈশিষ্ট্য লেখ অঙ্কন করো ও ব্যাখ্যা করো। ৫+২+৩
- ৫। (ক) FET-এর 'পিঞ্চ-অফ' ভোল্টেজ বলতে কী বোঝো?
 - (খ) JFET ও MOSFET-এর বৈশিষ্ট্যগুলি তুলনা করো।
 - (গ) একটি *n*-চ্যানেল FET-এর কার্যনীতি ব্যাখ্যা করো। ২+৩+৫
- ৬। (ক) একটি আদর্শ OPAMP-র বৈশিষ্ট্যগুলি উল্লেখ করো।
 - (খ) সুন্দর বর্তনী চিত্রের সাহায্যে OPAMP ব্যবহার করে একটি নন-ইনভার্টিং বিবর্ধকের আউটপুট বিভবের রাশিমালা নির্ণয় করো।
 - (গ) ধনাত্মক ফীডব্যাক বলতে কী বোঝো? ৩+৫+২
- ৭। (ক) ভীন-ব্রীজ স্পন্দকের বর্তনী চিত্র আঁক এবং এর কম্পাঙ্কের রাশিমালা নির্ণয় করো।
 - (খ) স্পন্দকের মূলনীতি সংক্ষেপে বর্ণনা করো। স্পন্দক থেকে আউটপুট পেতে, কোনো ইনপুট সংকেতের প্রয়োজন আছে কিনা আলোচনা করো।
 (২+৪)+(৩+১)

[English Version]

The figures in the margin indicate full marks. Answer *question no.* 1 and *any four* questions from the rest.

1. Answer any five questions :

- (a) State Norton's theorem on electrical circuits.
- (b) Write down the working principle of Light Emitting Diodes (LED).
- (c) Why is negative feedback used in a circuit? Explain.
- (d) What is virtual ground of an OPAMP?
- (e) State the Barkhausen's criterion for sustained oscillation.
- (f) What is meant by rectification?
- (g) Define α and β for a transistor.
- 2. (a) Use Thevenin's theorem to calculate the current through the 100 Ω resistance in the following circuit :

T(5th Sm.)-Physics-G/DSE-A-1/CBCS/Day-1

	(b)	State Maximum power transfer theorem.
	(c)	What do you mean by ideal voltage and current sources? 4+3+3
3.	(a)	Explain the structure and working principle of a solar cell.
	(b)	Draw the circuit diagram for an $n-p-n$ transistor in the CE-mode.
	(c)	Explain how Zener diode maintains a constant voltage across the load. $4+3+3$
4.	(a)	Explain with circuit diagram the working of a Bridge rectifier.
	(b)	What is meant by 'line regulation' and 'load regulation'?
	(c)	Draw the I.V. characteristic curve of a PN junction diode and explain. 5+2+3
5.	(a)	What is meant by 'pinch-off' voltage in an FET?
	(b)	Compare the basic characteristics of JFET and MOSFET.
	(c)	Explain the working principle of an <i>n</i> -channel FET. $2+3+5$
6.	(a)	Write down the basic characteristics of an ideal OPAMP.
	(b)	Find the expression for the output voltage of the non-inverting amplifier using OPAMP with neat circuit diagram.
	(c)	What do you mean by positive feedback? 3+5+2
7.	(a)	Draw the circuit diagram of Wien-Bridge oscillator and determine the frequency of the oscillator.
	(b)	Discuss in brief the basic principles of an oscillator. State whether any input signal is required to obtain an output from the oscillator. $(2+4)+(3+1)$

(3)