2020

PHYSICS - GENERAL

Paper : GE/CC-1

(Mechanics)

Full Marks : 50
Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যগুলি পূণমান নির্দেশক।

১নং প্রশ্ন আবশ্যিক এবং অন্য যে-কোনো চারটি প্রশ্নের উত্তর লেখো।

১। যে-কোনো পাঁচটি প্রশ্নের উত্তর লেখো :
২×৫
(ক) ভেক্টরের গস্ ডাইভারজেন্স সূত্রটি বিবৃত করো।
(খ) দেখাও যে $\vec{\nabla} \phi$ ভেক্টরাটি $\phi(x, y, z)=$ ধ্রুবক এই তলের ওপর অভিলম্ব হয়।
(গ) m_{1} ও m_{2} ভরের দুটি বস্তুর মধ্যে আকর্যণ বল $\vec{F}=\frac{G m_{1} m_{2}}{r^{2}} \hat{r}$ । যেখানে বস্তুদ্বয়ের মধ্যের দূরত্ব $r \mid$ দেখাও যে $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$ ।
(ঘ) m ভর ও r ব্যাসার্ধের একটি গোল চাকতি টেবিলের ওপর গড়িয়ে চলছে। চাকতির কৌণিক বেগ ω হলে দেখাও যে মোট গতিশক্তি $E=\frac{3}{4} m \omega^{2} r^{2}$ ।
(ঙ) কর্ণলম্ব বা ক্যান্টিলিভার কী?
(চ) α-এর কেনন মানের জন্য $\vec{A}=(3 \hat{i}-4 \hat{j}+\hat{k})$ এবং $\vec{B}=(\hat{i}+3 \hat{j}-\alpha \hat{k})$ অভিলম্ব হবে?
(ছ) GPS-এর পুরো নাম কী? এর ব্যবহারিক প্রয়োগ উল্লেখ করো।
২। (ক) একটি ভেক্টরের মান 10 একক। এর দিক কোসাইনগুলো যথাক্রমে $0.483,0.215$ ও 0.676 হুলে ভেক্টরটি নির্ণয় করো।
(খ) দেখাও যে $\vec{\nabla} \times \vec{\nabla} \phi=\overrightarrow{0}$ ।
(গ) কোনো দৃঢ়বস্তু একটি স্থির কোণিক বেগে একটি অক্ষের সাপেক্ষে ঘুরলে দেখাও যে বস্তুর কোনো বিন্দুতে রৈখিক বেগের কার্ল কৌিক বেগের দ্বিগুণ হয়।
২+8+8

৩। (ক) কোনো বিন্দুর সাপেক্ষে একটি কণার কৌেণি ভররেগ $\vec{L}=\vec{r} \times \vec{p}$ । প্রমাণ করো $\frac{d \vec{L}}{d t}=\vec{\tau}$, যেখানে $\vec{\tau}=$ টর্ক। এই সন্পর্ক থেকে কৌণিক ভরবেগের সংরক্ষণ সূত্রটি প্রমাণ করো।
(খ) প্রমাণ করো, $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$ ।

$$
(৩+২)+৫
$$

8। (ক) নিউটনের মহাকর্য সূত্রটি লেখো।
(খ) মুক্তিবেগ কাকে বলে ? এর রাশিমালা নির্ণয় করো।
(গ) ভূসমলয় কক্ষপথ বলতে কী বোবোে?
৫। (ক) সরলদোলগতির অন্তর্গত একটি বস্তুকণার পূণশক্তির মান নির্ণয় করো এবং চিত্রসহ ব্যাখ্যা করো।
(খ) একটি অবমন্দিত কন্পনের অবকল সমীকরণ লেখো। (যেখানে কণার ভর m, একক বেগে বস্তুর ওপর ক্রিয়াশীল অবমন্দিত বল K ও প্রতি একক সরণে কণার ওপর প্রত্যানয়ক বল μ ।)

কণার ওপর অবমন্দনের মান খুব কম ধরে নিয়ে সমীকরণটি সমাধান করো।
৬। (ক) স্থিতিস্থাপক পদার্থ্থর ক্ষেত্রে দৃঢ়তা গুণাঙ্ক, η-এর সংজ্ঞা দাও।
(খ) একপ্রান্ত দৃঢ়ভাবে আবদ্ধ l দৈর্ঘ্য ও R ব্যাসার্ধ সম্পন্ন একটি নিরেট চোঙের মোচড় ভ্রামক নির্ণয় করো এবং মোচড় ধ্রুবক, C-এর সংভ্ঞা দাও।
(গ) দেখাও যে একটি তাররে θ রেডিয়ান মোচড় দিতে প্রয়োজনীয় কৃতকার্যের পরিমাণ $\frac{1}{2} C \theta^{2}$ ।

৭। (ক) আন্তরাণবিক বলের ভিত্তিতে তরলের পৃষ্ঠ-টান ব্যাখ্যা করো।
(খ) তরলের পৃষ্ঠ-টান ও পৃষ্ঠ-শক্তির ভিতর সম্পর্ক নির্ণয় করো।
(গ) পৃষ্ঠ-টানের মাত্রা নির্ণয় করো।
(ঘ) জুরিনের সূত্র বিবৃত করো।

[English Version]

The figures in the margin indicate full marks.
Answer question no. 1 and any four from the rest.

1. Answer any five questions:
(a) Write the Gauss Divergence Law of vector calculus.
(b) Show that $\vec{\nabla} \phi$ is normal to the surface $\phi(x, y, z)=$ const.
(c) The force of attraction between two masses m_{1} and m_{2} is $\vec{F}=\frac{G m_{1} m_{2}}{r^{2}} \hat{r}$, where r is the distance between the two bodies. Show that $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$.
(d) A disc of mass ' m ' and radius ' r ' is rolling over a table. If the angular velocity be ' ω ' then show that the total kinetic energy is $E=\frac{3}{4} m \omega^{2} r^{2}$.
(e) What is a cantilever?
(f) Find the value of α for which the vectors $\vec{A}=(3 \hat{i}-4 \hat{j}+\hat{k})$ and $\vec{B}=(\hat{i}+3 \hat{j}-\alpha \hat{k})$ will be perpendicular to each other.
(g) What is the full form of 'GPS'? State its practical applications.
2. (a) The magnitude of a vector is 10 unit. Its direction cosines are $0.483,0.215$ and 0.676 respectively. Find the vector.
(b) Show that $\vec{\nabla} \times \vec{\nabla} \phi=\overrightarrow{0}$.
(c) A rigid body is rotating at a constant angular velocity about an axis. Show that the curl of linear velocity at a point is twice the angular velocity for that rigid body. $2+4+4$
3. (a) The angular momentum of a particle about a point is $\vec{L}=(\vec{r} \times \vec{p})$. Prove that $\frac{d \vec{L}}{d t}=\vec{\tau}$, where, $\vec{\tau}=$ Torque. Hence prove that the angular momentum is conserved.
(b) Prove that, $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$
4. (a) State Newton's law of gravitation.
(b) Define escape velocity. Find out the expression for it.
(c) What are Geosynchronous orbits?

$$
2+(2+4)+2
$$

5. (a) Find out the value of total energy of a particle executing simple harmonic motion. Explain graphically.
(b) Write the differential equation of a damped simple harmonic oscillator, where mass of the oscillating body is m, the retarding force per unit velocity is ' K ' and the restoring force per unit displacement is ' μ '. Solve the above differential equation for small damping.
$(4+1)+(2+3)$
6. (a) Define modulus of rigidity, η for elastic body.
(b) Determine the twisting couple on a solid cylinder of length l and radius R, rigidly fixed at one end. Hence define torsional constant, C.
(c) Show that, the work done in twisting a wire through angle, θ radian is $\frac{1}{2} C \theta^{2}$.
7. (a) How is the surface tension of a liquid explained on the basis of intermolecular forces?
(b) Obtain a relationship between surface tension and surface energy of a liquid.
(c) Find out the dimension of surface tension.
(d) State Jurin's law.
