2019

PHYSICS — HONOURS

Paper: CC-3

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions:

2×5

(a) Check whether the following represent electrostatic fields or not:

$$\vec{E}_1 = (4y\hat{i} - 2x\hat{j} - \hat{k}); \vec{E}_2 = (4xy - z^3)\hat{i} + 2x^2\hat{j} - 3xz^2\hat{k}.$$

- (b) Verify that for a charged spherical conductor of radius a, $\epsilon_0 \int E^2 dv = \frac{Q^2}{4\pi \epsilon_0 a}$.
- (c) State and explain Gauss' law in dielectric medium.
- (d) A charge of 4C is moving with a velocity $\vec{v} = (2\hat{i} + 3\hat{k})$ in a magnetic field $\vec{B} = (2\hat{j} + 5\hat{k})Wb/m^2$. Find the force acting on the charge.
- (e) Λ 1.5m long solenoid of 0.4cm diameter possesses 10 turns per cm length. A current of 5Λ flows through it. Find the magnetic field at the axis inside the solenoid.
- (f) A sample of gold having magnetic susceptibility -3.6×10^{-5} is placed in a magnetising field of strength 60×10^3 A turn/m. Find the magnetic induction within the sample.
- (g) If the wave form of a current has form factor 1.2 and peak factor 1.7, find the average and r.m.s value of the current if maximum current is 100A.
- 2. (a) Show that electric field is always perpendicular to a equipotential surface.
 - (b) A point charge 'q' is placed symmetrically at a distance 'd' from two perpendicularly placed grounded conducting infinite plates. Calculate the net force F on the charge 'q'.
 - (c) A point charge q is placed at a distance r_0 from the centre of a grounded spherical conductor of radius $a(a > r_0)$. Find by method of electrical image the electric field at an external point and total charge induced on the sphere. 2+2+(4+2)

- 3. (a) Define an electric dipole. Calculate the potential and field due to an electric dipole of dipole moment 4.5×10^{-10} coulomb meter at a point at a distance 1 meter from it on its axis.
 - (b) The distance between the plates of a parallel plate condenser is d. A dielectric slab of thickness x is introduced in the air gap. Show that the capacity of the condenser will be doubled if the

dielectric constant of the slab is
$$k = \frac{2x}{2x - d}$$
. (1+5)+4

- 4. (a) What is Lorentz force? A long straight conductor carries a current I. Determine the force per unit length of the conductor when it is placed in a uniform magnetic field.
 - (b) State Faraday's Law of electromagnetic induction and express it in differential form.
 - (c) Explain how Maxwell generalized Ampere's circuital law.

(2+2)+(2+2)+2

- (a) Draw magnetisation curves for soft iron and steel on the same graph as each is taken through a complete cycle of magnetic field.
 - (b) With reference to the above curves, compare the properties of the two samples with respect to residual magnetism, coercive force and hysteresis loss.
 - (c) A specimen of iron of density 7700 Kg/m³ and specific heat 462 JKg⁻¹K⁻¹ is magnetized by an ac field of frequency 50 Hz. Assuming no loss of heat, calculate rise in temperature of the specimen per minute. Given that the area enclosed by the B-H loop of the specimen is equivalent to 5000 Jm⁻³cycle⁻¹.
 - (d) State Kirchhoff's Voltage Law. Show that it is consistent with the principle of conservation of energy.
 2+3+3+2
- (a) What is Maximum Power Transfer Theorem? Using this theorem, show that Power Transfer Efficiency cannot exceed 50%.
 - (b) State Superposition Theorem for a network of electrical circuit. Using this theorem, find the potential drop across the $5K\Omega$ resistor.

(2+3)+(2+3)

- 7. (a) Prove that for parallel LCR circuit at resonance the impedance of the circuit is maximum.
 - (b) From current response curve for a series LCR circuit, show how Q-factor of the circuit quantifies the sharpness of resonance.
 - (c) A 230V, 50Hz voltage is applied to a coil L = 5H and $R = 2\Omega$ in series with a capacitance C. What value must C have in order that the voltage across the coil be 400 V? 4+2+4